Rationale

Mathematics is a tool for everyday life. It is a whole network of concepts and relationships which provide a way of viewing and making sense of the world. It is used to analyse and communicate information and ideas and to tackle a range of practical tasks and real life problems. It also provides the materials and means for creating new imaginative worlds to explore.

Aims and Objectives

- A positive attitude towards mathematics and an awareness of the fascination of mathematics;
- Competence and confidence in mathematical knowledge, concepts and skills;
- An ability to solve problems, to reason, to think logically and to work systematically and accurately;
- Initiative and an ability to work both independently and in cooperation with others;
- An ability to communicate mathematics;
- An ability to use and apply mathematics across the curriculum and in real life;
- An understanding of mathematics through a process of enquiry and experiment.

Organisation and Teaching Approaches

A typical lesson involves all classes following the White Rose scheme of work which is a whole-school primary maths programme. Questions are carefully crafted to develop children's fluency, reasoning, and problem solving skills and conceptual understanding for mastery. It focuses on core topics to build deep understanding.

This policy has been largely adapted from the White Rose Maths Hub Calculation Policy with further material added. It is working document and will be revised and amended as necessary. The purpose of this document is to outline the stages of progress for written calculation methods in the four operations. Each operation uses the concrete, pictorial and abstract (CPA) sequence to support the children in gaining a secure understanding of each concept.

Concrete

In this stage, the children are introduced to an idea or a skill through using real objects. They are able to manipulate the objects and is the foundation for conceptual understanding.

Pictorial

In this stage, the children have understood the hands on experiences performed and can now relate them to representations such as a diagram or picture of the problem.

Abstract

In this stage, the children are now capable of now representing problems by using the mathematical notation. They only use this stage when they have enough context to understand what the calculation means.

It is important that the children are exposed to these three stages in order and are supported by models, images and practical apparatus. These include the use of the part-whole and bar model methods. Examples of these have been included in each section. These should be used regardless of the stage that the children are working at and will need to be returned to when moving to larger numbers.

Teachers need to take into account the stage in which each of their children are working at so that they have a sound understanding of the mathematics and not just a mechanical method for finding an answer. The children need to have this understanding of what they are doing within each stage before moving onto the next. Previous steps therefore may need to be revisited to consolidate understanding when introducing a new strategy.

Number and Place Value

A sound understanding of place value and the number system is essential for children to carry out calculations efficiently and accurately.

Fluency within the four operations is dependent on the children's secure understanding of number and place value. The following skills need to be taken into account;

- Accurate and rapid recall of basic number bonds to 10,20 and 100.
- Having a sense of number by identifying patterns and thinking about connections between calculations.
- Accurate and rapid recall of times tables facts (Daily/weekly times tables tests and the use of TT Rockstars). The times tables need to be taught in the following order; $x 10, x 5, x 2, x 4, x 8, x 3, x 6, x 9, x 7$.
- Developing an understanding of the = symbol (Through the use of balancing scales this concept is easily demonstrated).
- Developing mathematical reasoning - Through teachers questioning pupils should be encouraged to develop their reasoning skills using the following strategies; What is the same and what is different; odd one out; here's the answer, what could the question have been

Addition

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use cubes to add two numbers together as a group or in a bar.	8 1	$4+3=7$ $10=6+4$
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.

Regrouping to make 10.	$6+5=11$$\theta$ 0 0 0 0 6 \ddots \ddots \circ 0 Start with the bigger number and use the smaller number to make 10.	Use pictures or a number line. Regroup or partition the smaller number to make 10 .	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?
Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10 .	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.

Subtraction

Objective and Strategies	Concrete	Pictorial	Abstract

Taking away ones | Use physical objects, counters, cubes |
| :--- |
| etc to show how objects can be taken |
| away. |
| Counting back |
| subsaction. Move the beads along your |
| bead |
| string |
| as you |
| count |
| backw |
| ards in |
| ones. |

Find the difference

	Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5 . You are left with the answer of 9.	Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	How many do we have left to take off?
Column method without regrouping	 Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again make the larger number first.		$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ \hline 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction.

Multiplication

Objective and Strategies	Concrete	Pictorial	Abstract
Doubling	Use practical activities to show how to double a number. double 4 is 8 $4 \times 2=8$	Draw pictures to show how to double a number. Double 4 is 8 \square \square \square \square \square \square \square \square	Partition a number and then double each part before recombining it back together.
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \end{aligned}$

Repeated addition

Division

| Objective and
 Strategies | Concrete | Pictorial | Abstract |
| :--- | :---: | :---: | :---: | :---: |
| Sharing objects into
 groups | | Share 9 buns between three
 people. | |

Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. $96 \div 3=32$	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?
Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rrr} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$

Division with a

remainder \begin{tabular}{l}
$14 \div 3=$

Divide objects between groups and see

how much is left over

Complete written divisions

and show the remainder

using r.
\end{tabular}

